حل عددی معادلات انتگرال ولترای دوبعدی با استفاده از چندجمله ای های لژاندر

thesis
abstract

در این پایان نامه، روش های عددی برای بدست آوردن جواب های تقریبی چند رده از معادلات بر اساس پایه چندجمله ای های برنشتاین دوبعدی ارائه می شود. معادلات مطرح شده، معادلات انتگرال ولترای دوبعدی خطی و غیرخطی نوع اول و دوم و همچنبن معادلات انتگرال- دیفرانسیل ولترای دوبعدی می باشند. ایده اصلی در این روش ها، استفاده از ماتریس های عملیاتی چندجمله ای های برنشتاین دوبعدی می باشد. از آن جایی که توابع برنشتاین دوبعدی متعامد نمی باشند، با استفاده از بسط این توابع بر حسب پایه لژاندر انتقال یافته دوبعدی، ماتریس های عملیاتی مذکور ارائه می شوند. بدین منظور، نخست جواب معادله مورد نظر را به صورت (dt b(x, t(که در آن d بردار ضرایب مجهول و (b(x,t بردار پایه برنشتاین دوبعدی می باشد) تقریب زده و سپس با بکارگیری ماتریس های عملیاتی این چندجمله ای ها، این معادله را به یک معادله ماتریسی هم ارز که با یک دستگاه از معادلات جبری با ضرایب مجهول برنشتاین مطابقت دارد، تبدیل می کنیم. با حل این دستگاه، بردار ضرایب d بدست آمده و در نتیجه جواب تقریبی برای معادله حاصل می شود. برای نشان دادن کارایی روش های مطرح شده برای هریک از انواع معادلات مثال هایی ارائه می شود و نتایج آن با نتایج عددی بدست آمده از دیگر روش های موجود برای حل این معادلات مقایسه می شود.

similar resources

روش عددی برای حل یک کلاس از مساله کنترل بهینه کسری دوبعدی با کمک ماتریس های عملیاتی چندجمله ای لژاندر

در این مقاله یک روش برای حل یک کلاس از مساله کنترل بهینه کسری دوبعدی با استفاده از ماتریس های عملیاتی چندجمله‌ای لژاندر ارائه می‌دهیم. لازم به ذکر است که دستگاه دینامیکی مساله براساس مشتق کسری کاپوتوی دوبعدی می باشد. در روش مورد نظر، انتگرال دوگانه توسط قاعده گاوس-لژاندر دوبعدی تقریب زده می شود و سپس با کمک معادله لاگرانژین یک دستگاه معادلات غیرخطی بدست می آید. این دستگاه معادلات غیرخطی ب...

full text

حل عددی معادلات انتگرال و انتگرال-دیفرانسیل با استفاده از چندجمله ای های لژاندر و چبیشف

برای حل معادلات انتگرال پریشنده منفرد و معادلات انتگرال-دیفرانسیل ولترا مرتبه اول و معادلات انتگرال-دیفرانسیل تأخیری ولترا، از روش بسط متناهی لژاندر و برای حل معادلات انتگرال ولترا با هسته های لگاریتمی از بسط متناهی چبیشف استفاده می کنیم و به تحلیل خطا و بعد از آن به بررسی مقایسه بین نتایج به دست آمده با دیگر روش ها می پردازیم.

15 صفحه اول

حل عددی معادلات انتگرال همرشتاین غیرخطی با استفاده از پایه لژاندر- برنشتاین

در این مقاله، یک روش عددی برای حل معادلات انتگرال همرشتاین غیرخطی، ارائه شده است. بدین منظور هسته با استفاده از روش تقریب کمترین مربعات و بر حسب پایه لژاندر- برنشتاین تقریب زده شده است. چندجمله ایهای لژاندر متعامدند و این ویژگی دقت تقریب را بهبود می بخشد. همچنین تابع مجهول به وسیله پایه برنشتاین تقریب زده شده است. ویژگی های مفید چند جمله ایهای برنشتاین به ما کمک می کند تا معادله انتگرال همرشتای...

full text

حل عددی معادلات انتگرال-دیفرانسیل فردهلم-ولترای-همرشتاین غیرخطی با استفاده از توابع بسل

در این مقاله، روش هم محلی بر پایه چندجمله ای های بسل را برای حل معادلات انتگرال-دیفرانسیل فردهلم-ولترا-همرشتاین غیرخطی با شرایط آمیخته به کار می بریم. در این روش، معادلات انتگرال- دیفرانسیل فردهلم- ولترای- همرشتاین غیرخطی با به کارگیری چند جمله ای های بسل نوع اول و نقاط گره ای تبدیل به معادله ای ماتریسی می شود. معادله ماتریسی متناظربا یک دستگاه معادلات غیرخطی جبری با ضرایب نامعلوم  بسل  است. نت...

full text

حل عددی معادلات انتگرال ولترای دوبعدی از نوع اول

این پایان نامه،روش تاورا برای یافتن جواب های عددی معادلات انتگرال،برحسب چندجمله ای لژاندرارائه می دهد.معادلات انتگرال مطرح شده، معادلات انتگرال ولترای دوبعدی نوع اول به صورت خطی وغیرخطی ومعادلات انتگرال ولترای دوبعدی نوع دوم به صورت خطی و غیرخطی ومعادلات انتگرال-دیفرانسیل می باشند.ایده اصلی دراین روش استفاده ازماتریس عملیاتی برای انتگرال گیری از توابع می باشد.برای این منظورابتدا با در نظر گرفتن...

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه الزهراء - دانشکده علوم پایه

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023